Standing Wave Field Distribution in Graded-Index Antireflection Coatings
نویسندگان
چکیده
منابع مشابه
Standing Wave Field Distribution in Graded-Index Antireflection Coatings
Standing wave field distributions in three classic types of graded-index antireflection coatings are studied. These graded-index antireflection coatings are designed at wavelengths from 200 nm to 1200 nm, which is the working wavelength range of high energy laser system for inertial-fusion research. The standing wave field distributions in these coatings are obtained by the numerical calculatio...
متن کاملRetrofittable T-ray antireflection coatings
Terahertz time-domain spectroscopy (THz-TDS) is able to extract optical or dielectric properties of materials, whether in the solid, liquid, or gas phase, in the T-ray frequency region. Spectroscopy of a liquid or gas often requires a receptacle to confine the sample. In order to allow T-rays to probe the sample effectively, the receptacle must have T-ray transparent windows. However, even thou...
متن کاملWitness sample preparation for measuring antireflection coatings.
Measurement of antireflection coating of witness samples from across the worldwide industry has been shown to have excess variability from a sampling taken for the OSA Topical Meeting on Optical Interference Coatings: Measurement Problem. Various sample preparation techniques have been discussed with their limitations, and a preferred technique is recommended with its justification, calibration...
متن کاملColloidal subwavelength nanostructures for antireflection optical coatings.
A two-dimensional (2D) subwavelength nanostructure for antireflection coating is fabricated upon a transparent substrate. Self-assembled 2D colloidal crystals are used as a nanoscale composite material with controlled thickness and low refractive index. The feature size of the structure is approximately 105 nm. The structure is used for antireflection coating, and the measured reflectivity of a...
متن کاملLoss/gain-induced ultrathin antireflection coatings
Tradional antireflection coatings composed of dielectric layers usually require the thickness to be larger than quarter wavelength. Here, we demonstrate that materials with permittivity or permeability dominated by imaginary parts, i.e. lossy or gain media, can realize non-resonant antireflection coatings in deep sub-wavelength scale. Interestingly, while the reflected waves are eliminated as i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2018
ISSN: 2076-3417
DOI: 10.3390/app8010065